
COMPSCI 732

Software Tools and Techniques

Databases and Semistructured Data

Who is this lecturer?

BTech, MTech at Massey Uni.

PhD at the University of Melbourne (UoM).

“The foundations of deductive object oriented
databases”.

Worked for a couple of years in industry.

Lectured at Massey University, UoM, VUW.

Collaborate with researchers at VUW and NUS.

Current research in databases: building a database
specialized to XML or semistructured data,
algorithm correctness, access control, data
modeling, data mining.

Gill Dobbie

Rm 303 475

Ph 09 373 7599 ext. 83949

Email gill@cs.auckland.ac.nz

Outline

• Why is data important?

• Why do we need novel database

systems?

• What are Native XML databases (NXDs)?

• What are the advantages of storing

semistructured data in NXDs rather than

Relational Databases?

• How does querying work in NXDs?

Why is data important?
• Organizational data is generally not valued as

highly as other organizational assets such as

cash or monetary resources, real estate,

inventory and reputation.

• The data, then, is not well understood, often

less well managed, and routinely

underutilized.

• The wealth of information to be gleaned from

stored data represents untapped resources

that can be made available for corporate

management to grow its business.

Relational Databases

• Simple

• Deal with structured data

• Model constraints in schema

• Indexes to improve query performance

• Standard query language

• Have mathematical foundation that is used

for modeling algorithms and reasoning

about properties and correctness

What is semistructured data?

• Data with no common structure

E.g. an XML document that you create to
record publications that you have written where
the details that you store for conferences is
different from the details of journals.

• Data with no predefined structure

E.g. when you are building a website you do
not want to have to define what the constraints
on the data are because you don’t want to be
locked into a structure

• Compare this with data in a relational
database

Representation of semistructured

data
• XML is the ideal way to represent

semistructured data

• XML stands for eXtensible Markup Language

• XML is a markup language like HTML

• XML is designed to describe data and for the
exchange of data

• XML is free and extensible, that is XML tags
are not predefined, so you can invent your
own tags

• XML is self-describing
XML Joke [w3schools]

Question: When should I use XML?

Answer: When you need a buzzword in your resume.

Positive features of XML

• Do not have to think too hard about the

structure of the data before building a

document

• Do not have to define a schema

• The documents are very flexible i.e. can

add new things and change things in an

ad hoc manner

Negative features of XML

• Do not have to think too hard about the

structure of the data before building a

document

• Do not have to define a schema, so you

don’t think about the constraints between

bits of data

• The documents are very flexible i.e. can

add new things and change things in an

ad hoc manner and you may break

constraints

XML Documents
XML documents fall into two broad categories:

data-centric and document-centric.
<?xml version='1.0'?>

<!-- This file represents a fragment of a book store inventory database -->

<bookstore>

<book genre="autobiography">

<title>The Autobiography of Benjamin Franklin</title>

<author>

<first-name>Benjamin</first-name>

<last-name>Franklin</last-name>

</author>

<price>(US)$8.99</price>

</book>

<book genre="novel">

<title>The Confidence Man</title>

<author> Herman Melville</author>

<price>(NZ)$11.99</price>

</book>

</bookstore>

<Product>

<Name>Turkey Wrench</Name>

<Developer>Full Fabrication Labs, Inc.</Developer>

<Summary>Like a monkey wrench, but not as big.</Summary>

<Description>

<Para>The turkey wrench, which comes in <i>both right- and

left-handed versions (skyhook optional)</i>, is made of the finest stainless steel.

The Readi-grip rubberized handle quickly adapts to your hands, even in the greasiest situations.

Adjustment is possible through a variety of custom dials.

</Para>

<Para>You can:</Para>

<List>

<Item><Link URL="Order.html">Order your own turkey wrench </Link> </Item>

<Item><Link URL="Wrenches.htm">Read more about wrenches </Link> </Item>

<Item><Link URL="Catalog.zip">Download the catalog</Link></Item>

</List>

<Para>The turkey wrench costs just $19.99 </Para>

</Description>

</Product>

Tools for the storage and

management of XML documents

• I come to this area from a database
perspective, as do many other researchers in
this area.

• There are a lot of issues:

– Removing redundancy

– Modeling constraints on the data

– Mapping XML to RDBs

– Storing XML in native XML databases

– Query performance in native XML databases

– Indexes in native XML databases

– Etc.

Do we need XML databases?
Course web pages from the UoACourse web pages from the UoA Characteristics:

-Currently stored in HTML in files

-Some content static, some changes

often

-Not all pages have the same structure

-Updated by >1 person

Solution:

-Store information in database

-How should information be organized?

-Who should be able to access what

information?

What are XML databases?

• XML-enabled databases are databases with

extensions for mapping data between XML

documents and themselves, e.g., Access

2002, Informix, Oracle 9i.

• Native XML databases are databases that

store XML in "native" form, generally as some

variant of the DOM mapped to an underlying

data store, e.g., eXist, Tamino, Xindice.

What is a native XML database

(NXD)?

• It’s a database that stores and retrieves XML

documents efficiently

• The view that users have should be that it stores

and retrieves XML documents

• The query language should be based on XML,

and the structure of XML

• The indexes should ensure the fast execution of

queries against XML documents

What is a native XML database

(NXD)?
Definition from XML:DB Initiative (http://www.xmldb.org/)

a) Defines a (logical) model for an XML document – as opposed to

the data in the document - and stores and retrieves documents

according to that model. At a minimum, the model must include

elements, attributes, PCDATA, and document order. Examples of such

models are the XPath data model, the XML Infoset, and the models

implied by the DOM and the events in SAX.

b) Has an XML document as its fundamental unit of (logical) storage,

just as a relational database has a row in a table as its fundamental unit

of (logical) storage.

c) Is not required to have any particular underlying physical storage

model. For example, it can be built on a relational, hierarchical, or

object-oriented database, or use a proprietary storage format such as

indexed, compressed files.

Background
What is a logical model?

For relational databases the logical model

consists of tables/rows/columns etc.

It is the structure of the data

as we understand it.

The physical model represents

how the data is really stored.

Internal (physical)

schema

Conceptual (logical) schema

What are the implications of

the definition?

1. A native XML database is specialized for storing XML

documents and stores all components of the XML model

intact.

2. XML documents go in and XML documents come out.

3. The underlying data storage format or the physical

model is unimportant for the categorization of databases.

Advantages of storing data in

NXD
Semistructured data stored in a relational database

will result in a large number of nulls or a large number

of tables.

Retrieval of documents or parts of documents

might be fast.

Retrieving a view over the data might be slower

More nulls or more tables

<person>

<name>bob</name>

<age>15</age>

<mother>mary</mother>

<father>john</father>

</person>

<person>

<name>john</name>

<parent>jacob</parent>

</person>

<person>

<name>mary</name>

</person>

nullnullnullnullmary

jacobnullnullnulljohn

nulljohnmary15bob

parentfathermotheragename

mary3

john2

bob1

nameid

151

ageid

mary1

motherid

john1

fatherid

jacob2

parentid

<list>

</list>

Faster retrieval of documents

mary3

john2

bob1

nameid

151

ageid

mary1

motherid

jacob2

parentid

john1

fatherid

<person>

<name>bob</name>

<age>15</age>

<mother>mary</mother>

<father>john</father>

</person>

<person>

<name>john</name>

<parent>jacob</parent>

</person>

<person>

<name>mary</name>

</person>

<list>

</list>

Slower retrieval of views

mary3

john2

bob1

nameid

151

ageid

mary1

motherid

jacob2

parentid

john1

fatherid

Find the name of everyone who is 15

<person>

<name>bob</name>

<age>15</age>

<mother>mary</mother>

<father>john</father>

</person>

<person>

<name>john</name>

<parent>jacob</parent>

</person>

<person>

<name>mary</name>

</person>

<list>

</list>

Architectures for NXDs

Architectures for NXDs fall into two categories:

Text based NXD

Stores XML as text e.g. in a file, in a relational database,

in some other form.

Usually have indexes, allowing direct access within

the XML document, improving access to documents

or pieces of documents.

Problem when inverting the hierarchy or portions of it.

Model based NXD

Rather than storing the XML document as text, build an

internal object model from the document and store this

model. How the model is stored depends on the underlying

database. Some databases use a propriety storage format

optimized for their model.

Model taken from http://www.informatics.bangor.ac.uk/~rich/research/papers/uwb_rge_IDEAL2000.pdf

Tables can include doc, node, element_name,

element_value, etc.

Model based NXD example

<person>

<name>bob</name>

<age>15</age>

<mother>mary</mother>

<father>john</father>

</person>

<person>

<name>john</name>

<parent>jacob</parent>

</person>

<person>

<name>mary</name>

</person>

<list>

</list>

list

personpersonperson

parentnamemother fatheragename name

text text text text text text text

1

2

3

4 5

7 106

36

19

16131298 26 2722 2317

31 34

32 33

18151411 2421

2920 3530

2825

XPath queries:

/list/person[name=“john”]/parent

/list/person[1]

/list/person[1]/*

27

Model based NXD example

11

root_node_iddoc_id

…………………

null8null3414

47null2313

320null1212

2nullnullnull111

first_childnext_siblingprev_siblingparent_nodedepthowner_doc_idnode_id

doc

node

……

158

bob4

valuenode_id

……

name3

person2

list1

namenode_id

element_name element_value

Query languages

The most popular query languages to date are based on

XPath.

Since the W3C has defined XQuery, XPath has become

more popular.

Previously, many propriety query languages were supported.

The query language must support different kinds of

queries, including paths through the hierarchy, missing

levels in the hierarchy, ordering, many documents,

collections.

29

XPath
XPath uses path expressions to navigate through the

logical, hierarchical structure of an XML document.

An XPath expression locates nodes within a tree.

book//section/title

Finds all “title” elements that are children of “section”

elements which have an ancestor named “book”.
book

section

book book

title

chapter

section

title

section

paragraph

title

XPath predicate expressions
book//section[contains(title, ‘XML’)]

Find all sections whose title contains the string “XML”.

The result of a path expression is a sequence of distinct

nodes in document order.
book

chapter

section

title

XML for Dummies

31

XPath processing
book//figure/caption

Follow every path beginning at book to check for potential

figure descendents and subsequently caption children, unless

there is a way to determine the location of “figure”

descendents in advance.

Index structures are needed to efficiently perform queries

on large document collections.

The indexes must support both structural and value based

selections. B+ trees (or similar) work well for value based

selections. What about ancestor/descendant and parent/child

relationships?

Summary

• Data is an asset that is undervalued.

• Relational databases are a well developed technology
for structured data.

• Relational databases are not suitable for unstructured or
semistructured data.

• Native XML databases are suitable for semistructured
data but they are less well developed.

• NXDs vary in the way they model and store data.

• There are two main architectures for NXDs: text based
NXDs and model based NXDs.

• Text based NXDs are preferable if the user does not
need to manipulate the structure of the data much.

Source and further reading
• http://www.w3schools.com/

• http://www.w3.org/

• Ramakrishnan, Raghu and Gehrke, Johnannes. Database Management
Systems.McGraw Hill.

• Elmasri, Ramez and Navathe, Shamkant. Fundamentals of Database
Systems. Addison Wesley.

• Bourett, Ronald. XML and Databases.

Available at : http://www.rpbourret.com/xml/XMLAndDatabases.htm

• Bourett, Ronald. XML Database Products.

Available at : http://www.rpbourret.com/xml/XMLAndDatabases.htm

• Obasanjo, Dare. An exploration of XML in DBMS.

Available at : http://www.25hoursaday.com/storingandqueryingxml.html

• Widom, Jennifer. Data Management for XML: Research Directions,
IEEE Data Engineering 22(3)

• Abiteboul, Serge and Buneman, Peter and Suciu, Dan. Data on the
Web:From Relations to Semistructured Data and XML, Morgan
Kaufmann, 2000

• Chaudhri, Akmal and Rashid, Awais and Zicari, Roberto. XML Data
Management: Native XML and XML-Enabled Databases, Addison
Wesley Professional, 2003.

Assorted Current Projects

• Proving properties of semistructured data and

related algorithms

• Semantic query optimization in native XML

databases

• Building a realtime ETL layer for data

warehouses

• Building a tool to construct mashups

Questions to ponder

• Are we replacing the steel wheel with a wooden
wheel?

• Is the database community targeting the right
problems or is our view too data centric?

• Is XML rich enough?

• Is this research limited to XML databases or does it
apply to any systems that deal with XML documents?

• Should we take XML databases seriously or are they
just a passing fad?

• Are XML databases just databases, as we know
them?

